1 Star 4 Fork 1

zhangming8/ByteTrack

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
贡献代码
同步代码
取消
提示: 由于 Git 不支持空文件夾,创建文件夹后会生成空的 .keep 文件
Loading...
README

ByteTrack-TensorRT in C++

Installation

Install opencv with sudo apt-get install libopencv-dev (we don't need a higher version of opencv like v3.3+).

Install eigen-3.3.9 [google], [baidu(code:ueq4)].

unzip eigen-3.3.9.zip
cd eigen-3.3.9
mkdir build
cd build
cmake ..
sudo make install

Prepare serialized engine file

Follow the TensorRT Python demo to convert and save the serialized engine file.

Check the 'model_trt.engine' file, which will be automatically saved at the YOLOX_output dir.

Build the demo

You should set the TensorRT path and CUDA path in CMakeLists.txt.

For bytetrack_s model, we set the input frame size 1088 x 608. For bytetrack_m, bytetrack_l, bytetrack_x models, we set the input frame size 1440 x 800. You can modify the INPUT_W and INPUT_H in src/bytetrack.cpp

static const int INPUT_W = 1088;
static const int INPUT_H = 608;

You can first build the demo:

cd <ByteTrack_HOME>/deploy/TensorRT/cpp
mkdir build
cd build
cmake ..
make

Then you can run the demo with 200 FPS:

./bytetrack ../../../../YOLOX_outputs/yolox_s_mix_det/model_trt.engine -i ../../../../videos/palace.mp4

(If you find the output video lose some frames, you can convert the input video by running:

cd <ByteTrack_HOME>
python3 tools/convert_video.py

to generate an appropriate input video for TensorRT C++ demo. )

马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/zhangming8/ByteTrack.git
git@gitee.com:zhangming8/ByteTrack.git
zhangming8
ByteTrack
ByteTrack
main

搜索帮助