代码拉取完成,页面将自动刷新
This repository provides a Minimal PyTorch implementation of Proximal Policy Optimization (PPO) with clipped objective for OpenAI gym environments. It is primarily intended for beginners in Reinforcement Learning for understanding the PPO algorithm. It can still be used for complex environments but may require some hyperparameter-tuning or changes in the code.
Modified from https://github.com/tangyudi/Ai-Learn
PPO_continuous.py
PPO.py
test_continuous.py
test.py
Trained and tested on:
gym==0.19.0
pyglet==1.5.27
box2d box2d-kengz
gym[box2d]
torch==2.0.1+cu117
If you still have problems, you can check requirement.txt
.
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。