代码拉取完成,页面将自动刷新
以下模型提取码都是1234
模型 | 预训练轮数 | 用途 | 下载链接 |
---|---|---|---|
DeiT-S | 100epoch | 分类 | 百度云 |
DeiT-S | 300epoch | 分类 | 百度云 |
Swin-T | 100epoch | 分类 | 百度云 |
Swin-T | 100epoch | 检测 | 百度云 |
DeiT-S | 100epoch | 分割 | 百度云 |
软件环境:pytorch1.8
硬件环境:NVIDIA A100/V100,AMD DCU
模型 | 预训练轮数 | 评估方式 | 结果 |
---|---|---|---|
DeiT-S | 100epoch | 线性评估 | 75.0% |
DeiT-S | 300epoch | 线性评估 | 76.9% |
Swin-T | 100epoch | 线性评估 | 73.8% |
Swin-T | 100epoch | 检测 | 42.7 mAP |
DeiT-S | 100epoch | 分割 | 74.04 mIoU |
python -m torch.distributed.launch --nproc_per_node=1 eval_linear.py --pretrained_weights /path/to/checkpoint.pth --checkpoint_key student--data_path /path/to/imagenet
git clone https://github.com/SwinTransformer/Swin-Transformer-Object-Detection
# single-gpu testing
python tools/test.py <CONFIG_FILE> <DET_CHECKPOINT_FILE> --eval bbox segm
# for example
python tools/test.py configs/swin/mask_rcnn_swin_tiny_patch4_window7_mstrain_480-800_adamw_1x_coco.py <DET_CHECKPOINT_FILE> --eval bbox segm
git clone https://github.com/fudan-zvg/SETR
# single-gpu testing
./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [--eval ${EVAL_METRICS}]
# For example, test a SETR-PUP on Cityscapes dataset with 8 GPUs
./tools/dist_test.sh configs/SETR/SETR_PUP_768x768_40k_cityscapes_bs_8.py \
work_dirs/SETR_PUP_768x768_40k_cityscapes_bs_8/iter_40000.pth \
8 --eval mIoU
@article{li2021mst,
title={MST: Masked Self-Supervised Transformer for Visual Representation},
author={Li, Zhaowen and Chen, Zhiyang and Yang, Fan and Li, Wei and Zhu, Yousong and Zhao, Chaoyang and Deng, Rui and Wu, Liwei and Zhao, Rui and Tang, Ming and others},
journal={arXiv preprint arXiv:2106.05656},
year={2021}
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。