TIM-VX is a software integration module provided by VeriSilicon to facilitate deployment of Neural-Networks on OpenVX enabled ML accelerators. It serves as the backend binding for runtime frameworks such as Android NN, Tensorflow-Lite, MLIR, TVM and more.
Main Features
Roadmap of TIM-VX will be updated here in the future.
TIM-VX uses bazel build system by default. Install bazel first to get started.
TIM-VX needs to be compiled and linked against VeriSilicon OpenVX SDK which provides related header files and pre-compiled libraries. A default linux-x86_64 SDK is provided which contains the simulation environment on PC. Platform specific SDKs can be obtained from respective SoC vendors.
To build TIM-VX
bazel build libtim-vx.so
To run sample LeNet
# set VIVANTE_SDK_DIR for runtime compilation environment
export VIVANTE_SDK_DIR=`pwd`/prebuilt-sdk/x86_64_linux
bazel build //samples/lenet:lenet_asymu8_cc
bazel run //samples/lenet:lenet_asymu8_cc
To build and run Tensorflow-Lite delegate on A311D platform
# clone and cross build VeriSilicon tensorflow fork with TFlite delegate support
git clone --single-branch --branch vx-delegate.v2.4.1 git@github.com:VeriSilicon/tensorflow.git vx-delegate; cd vx-delegate
bazel build --config A311D //tensorflow/lite/tools/benchmark:benchmark_model
# push benchmark_model onto device and run
./benchmark_model --graph=mobilenet_v1_1.0_224_quant.tflite --use_vxdelegate=true
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。