Focus-DETR is a model that focuses attention on more informative tokens for a better trade-off between computation efficiency and model accuracy. Compared with the state-of-the-art sparse transformed-based detector under the same setting, our Focus-DETR gets comparable complexity while achieving 50.4AP (+2.2) on COCO.
Paper: Less is More: Focus Attention for Efficient DETR. Dehua Zheng*, Wenhui Dong*, Hailin Hu, Xinghao Chen, Yunhe Wang.
Our Focus-DETR comprises a backbone network, a Transformer encoder, and a Transformer decoder. We design a foreground token selector (FTS) based on top-down score modulations across multi-scale features. And the selected tokens by a multi-category score predictor and foreground tokens go through the Pyramid Encoder to remedy the limitation of deformable attention in distant information mixing.
Dataset used: COCO2017
.
├── annotations # annotation jsons
├── test2017 # test data
├── train2017 # train dataset
└── val2017 # val dataset
After installing MindSpore via the official website, you can start evaluation as follows:
# infer example python
bash scripts/DINO_eval_ms_coco.sh /path/to/your/COCODIR /path/to/your/checkpoint
# bash scripts/DINO_eval_ms_coco.sh coco2017 ./logs/best_ckpt.ckpt
checkpoint can be downloaded at https://download.mindspore.cn/model_zoo/research/cv/Focus-DETR/.
Results of Focus-DETR with Resnet50 backbone:
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.479
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.659
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.521
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.323
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.505
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.619
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.372
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.640
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.720
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.568
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.757
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.878
Please check the official homepage.
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。