代码拉取完成,页面将自动刷新
Model | Distill | Pre-Train | mAP-all @ 0.50:0.95 | mAP-all @ 0.50 | mAP-all @ 0.75 | mAP-small @ 0.50:0.95 | mAP-medium @ 0.50:0.95 | mAP-large @ 0.50:0.95 | MindSpore Checkpoint |
---|---|---|---|---|---|---|---|---|---|
Gold-YOLO-N | ✅ | ❌ | 39.9 | 56.0 | 43.3 | 19.5 | 44.2 | 57.9 | Gold_n-dist-state_dict_ms.ckpt |
Gold-YOLO-S | ✅ | ✅ | 46.5 | 63.5 | 50.4 | 26.0 | 51.4 | 63.7 | Gold_s-pre-dist-state_dict_ms.ckpt |
Gold-YOLO-M | ✅ | ✅ | 51.1 | 68.5 | 55.4 | 32.4 | 56.2 | 68.5 | Gold_m-pre-dist-state_dict_ms.ckpt |
Gold-YOLO-L | ✅ | ✅ | 53.2 | 71.0 | 58.3 | 34.0 | 58.8 | 70.0 | Gold_l-pre-dist-state_dict_ms.ckpt |
pip install -r requirements.txt
change the data/coco.yaml to your data path
download the MindSpore Checkpoint from Benchmark to the pretrain fold
eval Gold-YOLO
# eval Gold-YOLO-n
python tools/eval.py --reproduce_640_eval --data data/coco.yaml --conf_file configs/gold_yolo-n.py --weights pretrain/Gold_n-dist-state_dict_ms.ckpt
# eval Gold-YOLO-s
python tools/eval.py --reproduce_640_eval --data data/coco.yaml --conf_file configs/gold_yolo-s.py --weights pretrain/Gold_s-pre-dist-state_dict_ms.ckpt
# eval Gold-YOLO-m
python tools/eval.py --reproduce_640_eval --data data/coco.yaml --conf_file configs/gold_yolo-m.py --weights pretrain/Gold_m-pre-dist-state_dict_ms.ckpt
# eval Gold-YOLO-l
python tools/eval.py --reproduce_640_eval --data data/coco.yaml --conf_file configs/gold_yolo-l.py --weights pretrain/Gold_l-pre-dist-state_dict_ms.ckpt
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。