TinyNets are a series of lightweight models obtained by twisting resolution, depth and width with a data-driven tiny formula. TinyNet outperforms EfficientNet and MobileNetV3.
Paper: Kai Han, Yunhe Wang, Qiulin Zhang, Wei Zhang, Chunjing Xu, Tong Zhang. Model Rubik's Cube: Twisting Resolution, Depth and Width for TinyNets. In NeurIPS 2020.
The overall network architecture of TinyNet is show below:
Dataset used: ImageNet 2012
.tinynet
├── README.md # descriptions about tinynet
├── script
│ ├── eval.sh # evaluation script
│ ├── train_1p_gpu.sh # training script on single GPU
│ └── train_distributed_gpu.sh # distributed training script on multiple GPUs
├── src
│ ├── callback.py # loss, ema, and checkpoint callbacks
│ ├── dataset.py # data preprocessing
│ ├── loss.py # label-smoothing cross-entropy loss function
│ ├── tinynet.py # tinynet architecture
│ └── utils.py # utility functions
├── eval.py # evaluation interface
└── train.py # training interface
# training on single GPU
bash train_1p_gpu.sh
# training on multiple GPUs, the number after -n indicates how many GPUs will be used for training
bash train_distributed_gpu.sh -n 8
Inside train.sh, there are hyperparameters that can be adjusted during training, for example:
--model tinynet_c model to be used for training
--drop 0.2 dropout rate
--drop-connect 0 drop connect rate
--num-classes 1000 number of classes for training
--opt-eps 0.001 optimizer's epsilon
--lr 0.048 learning rate
--batch-size 128 batch size
--decay-epochs 2.4 learning rate decays every 2.4 epoch
--warmup-lr 1e-6 warm up learning rate
--warmup-epochs 3 learning rate warm up epoch
--decay-rate 0.97 learning rate decay rate
--ema-decay 0.9999 decay factor for model weights moving average
--weight-decay 1e-5 optimizer's weight decay
--epochs 450 number of epochs to be trained
--ckpt_save_epoch 1 checkpoint saving interval
--workers 8 number of processes for loading data
--amp_level O0 training auto-mixed precision
--opt rmsprop optimizers, currently we support SGD and RMSProp
--data_path /path_to_ImageNet/
--GPU using GPU for training
--dataset_sink using sink mode
The config above was used to train tinynets on ImageNet (change drop-connect to 0.1 for training tinynet_b)
checkpoints will be saved in the ./device_{rank_id} folder (single GPU) or ./device_parallel folder (multiple GPUs)
# infer example
bash eval.sh
Inside the eval.sh, there are configs that can be adjusted during inference, for example:
--num-classes 1000
--batch-size 128
--workers 8
--data_path /path_to_ImageNet/
--GPU
--ckpt /path_to_EMA_checkpoint/
--dataset_sink > tinynet_c_eval.log 2>&1 &
checkpoint can be produced in training process.
Model | FLOPs | Latency* | ImageNet Top-1 |
---|---|---|---|
EfficientNet-B0 | 387M | 99.85 ms | 76.7% |
TinyNet-A | 339M | 81.30 ms | 76.8% |
EfficientNet-B^{-4} | 24M | 11.54 ms | 56.7% |
TinyNet-E | 24M | 9.18 ms | 59.9% |
*Latency is measured using MS Lite on Huawei P40 smartphone.
*More details in Paper.
We set the seed inside dataset.py. We also use random seed in train.py.
Please check the official homepage.
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。