MNN是一个轻量级的深度神经网络引擎,支持深度学习的推理与训练。适用于服务器/个人电脑/手机/嵌入式各类设备。目前,MNN已经在阿里巴巴的手机淘宝、手机天猫、优酷等30多个App中使用,覆盖直播、短视频、搜索推荐、商品图像搜索、互动营销、权益发放、安全风控等场景。
MNN-LLM是基于MNN引擎开发的大语言模型运行方案,解决大语言模型在本地设备的高效部署问题(手机/个人电脑/嵌入式设备)。支持常见的千问/百川/智谱/LLAMA等大语言模型。使用教程:MNN-LLM使用教程
MNN-Diffusion是基于MNN引擎开发的Stable Diffusion文生图模型运行方案,解决Stable Diffusion模型在本地设备的高效部署问题。使用教程:MNN-Diffusion使用教程
在阿里巴巴中,MNN被用作为Walle系统中计算容器的基础模块。Walle是首个端到端、通用型、规模化产业应用的端云协同机器学习系统,发表于操作系统顶会OSDI 2022。Walle的论文中解释了MNN的关键设计理念,并提供了MNN相对于其他深度学习框架(TensorFlow, TensorFlow Lite, PyTorch, PyTorch Mobile, TVM)的benchmark测试结果。相关测试脚本和说明文档被放在“/benchmark”目录下。如果MNN或Walle的设计对你的研究或生产有所助益,欢迎引用我们的OSDI论文:
@inproceedings {proc:osdi22:walle,
author = {Chengfei Lv and Chaoyue Niu and Renjie Gu and Xiaotang Jiang and Zhaode Wang and Bin Liu and Ziqi Wu and Qiulin Yao and Congyu Huang and Panos Huang and Tao Huang and Hui Shu and Jinde Song and Bin Zou and Peng Lan and Guohuan Xu and Fei Wu and Shaojie Tang and Fan Wu and Guihai Chen},
title = {Walle: An {End-to-End}, {General-Purpose}, and {Large-Scale} Production System for {Device-Cloud} Collaborative Machine Learning},
booktitle = {16th USENIX Symposium on Operating Systems Design and Implementation (OSDI 22)},
year = {2022},
isbn = {978-1-939133-28-1},
address = {Carlsbad, CA},
pages = {249--265},
url = {https://www.usenix.org/conference/osdi22/presentation/lv},
publisher = {USENIX Association},
month = jul,
}
MNN文档:
也可阅读 docs/README ,编译本地文档
MNN官网上还可以下载MNN团队全新力作MNN工作台,涵盖开箱即用模型、可视化训练等工具,更可以一键部署到多端设备。
MNN适配的硬件架构与精度详见下表:
Architecture / Precision | Normal | FP16 | BF16 | Int8 / Int4 | |
---|---|---|---|---|---|
CPU | Native | B | C | B | B |
x86/x64-SSE4.1 | A | B | B | A | |
x86/x64-AVX2 | S | B | B | A | |
x86/x64-AVX512 | S | B | B | S | |
ARMv7a | S | S (ARMv8.2) | S | S | |
ARMv8 | S | S (ARMv8.2) | S(ARMv8.6) | S | |
GPU | OpenCL | A | S | C | S |
Vulkan | A | A | C | A | |
Metal | A | S | C | S | |
CUDA | A | S | C | A | |
NPU | CoreML | A | C | C | C |
HIAI | A | C | C | C | |
NNAPI | B | B | C | B |
基于MNN (张量计算引擎),提供了一系列工具,以支持模型推理、训练和通用计算:
钉钉群组:
MNN初步版本的论文也曾在MLSys 2020上面发表。该论文主要关注MNN作为移动端机器学习推理引擎的手动算子优化。如果MNN之前对你的研究有所助益,欢迎引用MNN的MLSys论文:
@inproceedings{alibaba2020mnn,
author = {Jiang, Xiaotang and Wang, Huan and Chen, Yiliu and Wu, Ziqi and Wang, Lichuan and Zou, Bin and Yang, Yafeng and Cui, Zongyang and Cai, Yu and Yu, Tianhang and Lv, Chengfei and Wu, Zhihua},
title = {MNN: A Universal and Efficient Inference Engine},
booktitle = {MLSys},
year = {2020}
}
Apache 2.0
MNN参与人员:淘宝技术部、搜索工程团队、达摩院团队、优酷等集团员工。
MNN参考、借鉴了下列项目:
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。