12 Star 138 Fork 53

OpenMMLab/mmdetection

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
.circleci
.dev_scripts
.github
configs
_base_
albu_example
atss
autoassign
boxinst
carafe
cascade_rcnn
cascade_rpn
centernet
centripetalnet
cityscapes
common
condinst
conditional_detr
convnext
cornernet
crowddet
dab_detr
dcn
dcnv2
ddod
deepfashion
deformable_detr
detectors
detr
dino
README.md
dino-4scale_r50_8xb2-12e_coco.py
dino-4scale_r50_8xb2-24e_coco.py
dino-4scale_r50_8xb2-36e_coco.py
dino-5scale_swin-l_8xb2-12e_coco.py
dino-5scale_swin-l_8xb2-36e_coco.py
metafile.yml
double_heads
dyhead
dynamic_rcnn
efficientnet
empirical_attention
fast_rcnn
faster_rcnn
fcos
foveabox
fpg
free_anchor
fsaf
gcnet
gfl
ghm
gn+ws
gn
grid_rcnn
groie
guided_anchoring
hrnet
htc
instaboost
lad
ld
legacy_1.x
libra_rcnn
lvis
mask2former
mask_rcnn
maskformer
misc
ms_rcnn
nas_fcos
nas_fpn
objects365
openimages
paa
pafpn
panoptic_fpn
pascal_voc
pisa
point_rend
pvt
queryinst
regnet
reppoints
res2net
resnest
resnet_strikes_back
retinanet
rpn
rtmdet
sabl
scnet
scratch
seesaw_loss
selfsup_pretrain
simple_copy_paste
soft_teacher
solo
solov2
sparse_rcnn
ssd
strong_baselines
swin
timm_example
tood
tridentnet
vfnet
wider_face
yolact
yolo
yolof
yolox
demo
docker
docs
mmdet
projects
requirements
resources
tests
tools
.gitignore
.owners.yml
.pre-commit-config-zh-cn.yaml
.pre-commit-config.yaml
.readthedocs.yml
CITATION.cff
LICENSE
MANIFEST.in
README.md
README_zh-CN.md
model-index.yml
pytest.ini
requirements.txt
setup.cfg
setup.py
克隆/下载
贡献代码
同步代码
Loading...
README

DINO

DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection

Abstract

We present DINO (DETR with Improved deNoising anchOr boxes), a state-of-the-art end-to-end object detector. DINO improves over previous DETR-like models in performance and efficiency by using a contrastive way for denoising training, a mixed query selection method for anchor initialization, and a look forward twice scheme for box prediction. DINO achieves 49.4AP in 12 epochs and 51.3AP in 24 epochs on COCO with a ResNet-50 backbone and multi-scale features, yielding a significant improvement of +6.0AP and +2.7AP, respectively, compared to DN-DETR, the previous best DETR-like model. DINO scales well in both model size and data size. Without bells and whistles, after pre-training on the Objects365 dataset with a SwinL backbone, DINO obtains the best results on both COCO val2017 (63.2AP) and test-dev (63.3AP). Compared to other models on the leaderboard, DINO significantly reduces its model size and pre-training data size while achieving better results.

Results and Models

Backbone Model Lr schd box AP Config Download
R-50 DINO-4scale 12e 49.0 config model | log
Swin-L DINO-5scale 12e 57.2 config model | log
Swin-L DINO-5scale 36e 58.4 config model | log

NOTE

The performance is unstable. DINO-4scale with R-50 may fluctuate about 0.4 mAP.

Citation

We provide the config files for DINO: DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection.

@misc{zhang2022dino,
  title={DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection},
  author={Hao Zhang and Feng Li and Shilong Liu and Lei Zhang and Hang Su and Jun Zhu and Lionel M. Ni and Heung-Yeung Shum},
  year={2022},
  eprint={2203.03605},
  archivePrefix={arXiv},
  primaryClass={cs.CV}}
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/open-mmlab/mmdetection.git
git@gitee.com:open-mmlab/mmdetection.git
open-mmlab
mmdetection
mmdetection
main

搜索帮助