English | 简体中文
PaddleSeg is an end-to-end high-efficent development toolkit for image segmentation based on PaddlePaddle, which helps both developers and researchers in the whole process of designing segmentation models, training models, optimizing performance and inference speed, and deploying models. A lot of well-trained models and various real-world applications in both industry and academia help users conveniently build hands-on experiences in image segmentation.
High-Performance Model: Following the state of the art segmentation methods and use the high-performance backbone, we provide 40+ models and 140+ high-quality pre-training models, which are better than other open-source implementations.
High Efficiency: PaddleSeg provides multi-process asynchronous I/O, multi-card parallel training, evaluation, and other acceleration strategies, combined with the memory optimization function of the PaddlePaddle, which can greatly reduce the training overhead of the segmentation model, all this allowing developers to lower cost and more efficiently train image segmentation model.
Modular Design: We desigin PaddleSeg with the modular design philosophy. Therefore, based on actual application scenarios, developers can assemble diversified training configurations with data enhancement strategies, segmentation models, backbone networks, loss functions and other different components to meet different performance and accuracy requirements.
Complete Flow: PaddleSeg support image labeling, model designing, model training, model compression and model deployment. With the help of PaddleSeg, developers can easily finish all taskes.
Models | Components | Special Cases | |
Semantic SegmentationInteractive SegmentationImage MattingPanoptic Segmentation |
BackbonesLossesMetrics
|
DatasetsData Augmentation
|
Model Selection ToolHuman SegmentationCityscapes SOTA ModelCVPR Champion ModelDomain Adaptation |
Model | Backbone | Cityscapes mIoU(%) | V100 TRT Inference Speed(FPS) | Config File |
---|---|---|---|---|
FCN | HRNet_W18 | 78.97 | 24.43 | yml |
FCN | HRNet_W48 | 80.70 | 10.16 | yml |
DeepLabV3 | ResNet50_OS8 | 79.90 | 4.56 | yml |
DeepLabV3 | ResNet101_OS8 | 80.85 | 3.2 | yml |
DeepLabV3 | ResNet50_OS8 | 80.36 | 6.58 | yml |
DeepLabV3 | ResNet101_OS8 | 81.10 | 3.94 | yml |
OCRNet ![]() |
HRNet_w18 | 80.67 | 13.26 | yml |
OCRNet | HRNet_w48 | 82.15 | 6.17 | yml |
CCNet | ResNet101_OS8 | 80.95 | 3.24 | yml |
Note that:
Model | Backbone | Cityscapes mIoU(%) | V100 TRT Inference Speed(FPS) | Snapdragon 855 Inference Speed(FPS) | Config File |
---|---|---|---|---|---|
PP-LiteSeg ![]() |
STDC1 | 77.04 | 69.82 | 17.22 | yml |
PP-LiteSeg ![]() |
STDC2 | 79.04 | 54.53 | 11.75 | yml |
BiSeNetV1 | - | 75.19 | 14.67 | 1.53 | yml |
BiSeNetV2 | - | 73.19 | 61.83 | 13.67 | yml |
STDCSeg | STDC1 | 74.74 | 62.24 | 14.51 | yml |
STDCSeg | STDC2 | 77.60 | 51.15 | 10.95 | yml |
DDRNet_23 | - | 79.85 | 42.64 | 7.68 | yml |
HarDNet | - | 79.03 | 30.3 | 5.44 | yml |
SFNet | ResNet18_OS8 | 78.72 | 10.72 | - | yml |
Note that:
Model | Backbone | Cityscapes mIoU(%) | V100 TRT Inference Speed(FPS) | Snapdragon 855 Inference Speed(FPS) | Config File |
---|---|---|---|---|---|
MobileSeg | MobileNetV2 | 73.94 | 67.57 | 27.01 | yml |
MobileSeg ![]() |
MobileNetV3 | 73.47 | 67.39 | 32.90 | yml |
MobileSeg | Lite_HRNet_18 | 70.75 | 10.5 | 13.05 | yml |
MobileSeg | ShuffleNetV2_x1_0 | 69.46 | 37.09 | 39.61 | yml |
MobileSeg | GhostNet_x1_0 | 71.88 | 35.58 | 38.74 | yml |
Note that:
Introductory Tutorials
Basic Tutorials
Data Preparation
Model Export
Model Deploy
Advanced Tutorials
Model Compression
Welcome to Contribute
Advanced Development
Pull Request
PaddleSeg is released under the Apache 2.0 license.
If you find our project useful in your research, please consider citing:
@misc{liu2021paddleseg,
title={PaddleSeg: A High-Efficient Development Toolkit for Image Segmentation},
author={Yi Liu and Lutao Chu and Guowei Chen and Zewu Wu and Zeyu Chen and Baohua Lai and Yuying Hao},
year={2021},
eprint={2101.06175},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@misc{paddleseg2019,
title={PaddleSeg, End-to-end image segmentation kit based on PaddlePaddle},
author={PaddlePaddle Contributors},
howpublished = {\url{https://github.com/PaddlePaddle/PaddleSeg}},
year={2019}
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。
Activity
Community
Health
Trend
Influence
:Code submit frequency
:React/respond to issue & PR etc.
:Well-balanced team members and collaboration
:Recent popularity of project
:Star counts, download counts etc.