代码拉取完成,页面将自动刷新
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import os
import platform
import subprocess
import numpy as np
from tests.mark_utils import arg_mark
from mindspore import context, Tensor
from mindspore.common import dtype as mstype
from mindspore.nn import Cell
import mindspore.ops as ops
from mindspore.ops import DataType, CustomRegOp
from mindspore.ops.operations import _inner_ops as inner
class AOTSingleOutputNet(Cell):
def __init__(self, func, out_shapes, out_types, reg=None):
super(AOTSingleOutputNet, self).__init__()
self.program = ops.Custom(func, out_shapes, out_types, "aot", reg_info=reg)
def construct(self, x, y):
return self.program(x, y)
class AOTSingleOutputWithAttrNet(Cell):
def __init__(self, func, out_shapes, out_types, reg=None):
super(AOTSingleOutputWithAttrNet, self).__init__()
self.program = ops.Custom(func, out_shapes, out_types, "aot", reg_info=reg)
def construct(self, x, y):
return self.program(x, y, 0.7)
class AOTSingleOutputDynNet(Cell):
def __init__(self, func, out_types, reg=None):
super(AOTSingleOutputDynNet, self).__init__()
self.program = ops.Custom(func, None, out_types, "aot", reg_info=reg)
self.convert_to_dynamic = inner.ConvertToDynamic(
is_dynamic_rank=True).add_prim_attr("primitive_target", "CPU")
def construct(self, x, y):
x = self.convert_to_dynamic(x)
return self.program(x, y)
def get_cuda_bare_metal_version():
raw_output = subprocess.check_output(["nvcc", "-V"],
universal_newlines=True)
output = raw_output.split()
release_idx = output.index("release") + 1
release = output[release_idx].split(".")
version_major = release[0]
version_idx = release_idx + 1
version = output[version_idx].split(".")
version_middle = version[1] if len(version) > 1 else 0
version_minor = version[2] if len(version) > 2 else 0
return int(version_major), int(version_middle), int(version_minor)
def get_file_path_gpu(cuda, so):
dir_path = os.path.dirname(os.path.realpath(__file__))
cmd = "nvcc -D_GLIBCXX_USE_CXX11_ABI=0 --shared -Xcompiler -fPIC -o " + dir_path + "/aot_test_files/" + so + \
" " + dir_path + "/aot_test_files/" + cuda
func_path = dir_path + "/aot_test_files/" + so
return cmd, func_path
def get_file_path_cpu(cc, so):
dir_path = os.path.dirname(os.path.realpath(__file__))
cmd = "g++ -D_GLIBCXX_USE_CXX11_ABI=0 -std=c++17 --shared -fPIC -o " + dir_path + "/aot_test_files/" + so + " " + \
dir_path + "/aot_test_files/" + cc
func_path = dir_path + "/aot_test_files/" + so
return cmd, func_path
def check_exec_file(cmd, func_path, source, execf):
with os.popen(cmd) as f:
r = f.read()
if os.path.exists(func_path) and not r:
pass
else:
if os.path.exists(func_path):
os.remove(func_path)
assert False, "Failed to compile " + source + " to " + execf
def aot_single_output(get_file_path, source, execf, reg):
shape = (4, 5)
input_x = np.random.normal(0, 1, shape).astype(np.float32)
input_y = np.random.normal(0, 1, shape).astype(np.float32)
cmd, func_path = get_file_path(source, execf)
check_exec_file(cmd, func_path, source, execf)
try:
test = AOTSingleOutputNet(func_path + ":CustomAdd", (shape,), (mstype.float32,), reg)
output = test(Tensor(input_x), Tensor(input_y))[0]
except Exception as e:
if os.path.exists(func_path):
os.remove(func_path)
raise e
os.remove(func_path)
assert np.allclose(input_x + input_y, output.asnumpy(), 0.001, 0.001)
def aot_single_output_auto_compile(source_name, reg):
shape = (4, 5)
input_x = np.random.normal(0, 1, shape).astype(np.float32)
input_y = np.random.normal(0, 1, shape).astype(np.float32)
dir_path = os.path.dirname(os.path.realpath(__file__))
func_path = dir_path + "/aot_test_files/" + source_name
test = AOTSingleOutputNet(func_path + ":CustomAdd", (shape,), (mstype.float32,), reg)
output = test(Tensor(input_x), Tensor(input_y))[0]
assert np.allclose(input_x + input_y, output.asnumpy(), 0.001, 0.001)
def aot_single_output_dyn_shape(source_name, reg):
shape = (4, 5)
input_x = np.random.normal(0, 1, shape).astype(np.float32)
input_y = np.random.normal(0, 1, shape).astype(np.float32)
dir_path = os.path.dirname(os.path.realpath(__file__))
func_path = dir_path + "/aot_test_files/" + source_name
test = AOTSingleOutputDynNet(func_path + ":CustomAdd", mstype.float32, reg)
output = test(Tensor(input_x), Tensor(input_y))
assert np.allclose(input_x + input_y, output.asnumpy(), 0.001, 0.001)
def aot_single_output_with_attr(source_name, reg):
shape = (4, 5)
input_x = np.random.normal(0, 1, shape).astype(np.float32)
input_y = np.random.normal(0, 1, shape).astype(np.float32)
dir_path = os.path.dirname(os.path.realpath(__file__))
func_path = dir_path + "/aot_test_files/" + source_name
test = AOTSingleOutputWithAttrNet(func_path + ":CustomAdd", (shape,), (mstype.float32,), reg)
output = test(Tensor(input_x), Tensor(input_y))[0]
expect = input_x + input_y * 0.7 * 2 + 4
assert np.allclose(expect, output.asnumpy(), 0.001, 0.001)
def aot_single_output_with_attr_only(source_name, reg):
shape = (4, 5)
input_x = np.random.normal(0, 1, shape).astype(np.float32)
input_y = np.random.normal(0, 1, shape).astype(np.float32)
dir_path = os.path.dirname(os.path.realpath(__file__))
func_path = dir_path + "/aot_test_files/" + source_name
test = AOTSingleOutputNet(func_path + ":CustomAdd", (shape,), (mstype.float32,), reg)
output = test(Tensor(input_x), Tensor(input_y))[0]
expect = input_x + input_y * 0.7 * 2 + 4
assert np.allclose(expect, output.asnumpy(), 0.001, 0.001)
add_gpu_info = CustomRegOp("add_with_attr_kernel_gpu_1") \
.input(0, "x1") \
.input(1, "x2") \
.output(0, "y") \
.dtype_format(DataType.None_None, DataType.None_None, DataType.None_None) \
.attr("scale", "required", "float") \
.attr("paddings", "required", "all", value=[1.0, 2.0]) \
.attr("padding_index", "required", "int", value=1) \
.attr("use_padding", "required", "bool", value=True) \
.target("GPU") \
.get_op_info()
add_gpu_info_attr_only = CustomRegOp("add_with_attr_kernel_gpu_2") \
.attr("scale", "required", "float", value=0.7) \
.attr("paddings", "required", "all", value=[1.0, 2.0]) \
.attr("padding_index", "required", "int", value=1) \
.attr("use_padding", "required", "bool", value=True) \
.target("GPU") \
.get_op_info()
@arg_mark(plat_marks=['platform_gpu'], level_mark='level1', card_mark='onecard', essential_mark='unessential')
def test_aot_single_output_gpu():
"""
Feature: custom aot operator, multiple inputs, single output, GPU
Description: pre-compile xxx.cu to xxx.so, custom operator launches xxx.so
Expectation: nn result matches numpy result
"""
context.set_context(mode=context.GRAPH_MODE)
aot_single_output(get_file_path_gpu, "add.cu", "add.so", None)
aot_single_output_auto_compile("add.cu", None)
aot_single_output_dyn_shape("add.cu", None)
v_major, v_mid, v_minor = get_cuda_bare_metal_version()
if v_major >= 11 or (v_mid >= 1 and v_minor >= 168):
aot_single_output_with_attr("add_with_attr.cu", add_gpu_info)
aot_single_output_with_attr_only("add_with_attr.cu", add_gpu_info_attr_only)
add_cpu_info = CustomRegOp() \
.input(0, "x1") \
.input(1, "x2") \
.output(0, "y") \
.dtype_format(DataType.None_None, DataType.None_None, DataType.None_None) \
.target("CPU") \
.get_op_info()
add_with_attr_cpu_info = CustomRegOp("add_with_attr_kernel_cpu_1") \
.input(0, "x1") \
.input(1, "x2") \
.output(0, "y") \
.dtype_format(DataType.None_None, DataType.None_None, DataType.None_None) \
.attr("scale", "required", "float") \
.attr("paddings", "required", "all", value=[2.0, 2.0]) \
.target("CPU") \
.get_op_info()
add_cpu_info_attr_only = CustomRegOp("add_with_attr_kernel_cpu_2") \
.attr("scale", "required", "float", value=0.7) \
.attr("paddings", "required", "all", value=[2.0, 2.0]) \
.target("CPU") \
.get_op_info()
@arg_mark(plat_marks=['cpu_linux'], level_mark='level1', card_mark='onecard', essential_mark='unessential')
def test_aot_single_output_cpu():
"""
Feature: custom aot operator, multiple inputs, single output, CPU, GRAPH_MODE
Description: pre-compile xxx.cc to xxx.so, custom operator launches xxx.so
Expectation: nn result matches numpy result
"""
sys = platform.system()
if sys.lower() in {"windows", "darwin"}:
pass
else:
context.set_context(mode=context.GRAPH_MODE)
aot_single_output(get_file_path_cpu, "add.cc", "add.so", add_cpu_info)
aot_single_output_with_attr("add_with_attr.cc", add_with_attr_cpu_info)
aot_single_output_with_attr_only("add_with_attr.cc", add_cpu_info_attr_only)
aot_single_output_dyn_shape("add.cc", add_cpu_info)
@arg_mark(plat_marks=['platform_gpu'], level_mark='level1', card_mark='onecard', essential_mark='unessential')
def test_reorganize():
"""
Feature: custom aot operator, multiple inputs(dtypes:float32,int64_t), single output, GPU
Description: pre-compile xxx.cu to xxx.so, custom operator launches xxx.so
Expectation: nn result matches numpy result
"""
context.set_context(mode=context.GRAPH_MODE)
shape = [5]
input_x = np.array([1.0, 4.0, 9.0, 16.0, 25.0]).astype(np.float32)
input_y = np.array([3, 2, 0, 1, 4]).astype(np.int64)
expect = np.array([16.0, 9.0, 1.0, 4.0, 25.0]).astype(np.float32)
cmd, func_path = get_file_path_gpu("reorganize.cu", "reorganize.so")
check_exec_file(cmd, func_path, "reorganize.cu", "reorganize.so")
try:
test = AOTSingleOutputNet(func_path + ":CustomReorganize", (shape,), (mstype.float32,), None)
output = test(Tensor(input_x), Tensor(input_y))[0]
except Exception as e:
if os.path.exists(func_path):
os.remove(func_path)
raise e
os.remove(func_path)
assert np.allclose(expect, output.asnumpy(), 0.001, 0.001)
@arg_mark(plat_marks=['platform_gpu'], level_mark='level1', card_mark='onecard', essential_mark='unessential')
def test_hetero_square_mul():
"""
Feature: custom aot operator, multiple inputs(dtypes:float32,float16), single output(dtype:float16), GPU
Description: pre-compile xxx.cu to xxx.so, custom operator launches xxx.so
Expectation: nn result matches numpy result
"""
context.set_context(mode=context.GRAPH_MODE)
shape = [5]
input_x = np.random.normal(0, 1, shape).astype(np.float32)
input_y = np.random.normal(0, 1, shape).astype(np.float16)
expect = (input_x * input_x * input_y.astype(np.float32)).astype(np.float16)
cmd, func_path = get_file_path_gpu("hetero_square_mul.cu", "hetero_square_mul.so")
check_exec_file(cmd, func_path, "hetero_square_mul.cu", "hetero_square_mul.so")
try:
test = AOTSingleOutputNet(func_path + ":CustomHSquareMul", (shape,), (mstype.float16,), None)
output = test(Tensor(input_x), Tensor(input_y))[0]
except Exception as e:
if os.path.exists(func_path):
os.remove(func_path)
raise e
os.remove(func_path)
assert np.allclose(expect, output.asnumpy(), 0.001, 0.001)
class SquareGradNet(Cell):
def __init__(self, func, out_shapes, out_types, bprop, reg):
super(SquareGradNet, self).__init__()
self.square = ops.Custom(func, out_shapes, out_types, "aot", bprop, reg)
def construct(self, x):
res = self.square(x)
res2 = self.square(res)
return res2
@arg_mark(plat_marks=['platform_gpu'], level_mark='level1', card_mark='onecard', essential_mark='unessential')
def test_square_py_bprop():
"""
Feature: custom aot operator, bprop(pyfunc), GPU
Description: pre-compile xxx.cu to xxx.so, custom operator launches xxx.so
Expectation: nn result matches numpy result
"""
context.set_context(mode=context.GRAPH_MODE)
x = np.array([1.0, 4.0, 9.0]).astype(np.float32)
sens = np.array([1.0, 1.0, 1.0]).astype(np.float32)
expect = np.array([4.0, 256.0, 2916.0]).astype(np.float32)
cmd, func_path = get_file_path_gpu("square.cu", "square_py.so")
check_exec_file(cmd, func_path, "square.cu", "square_py.so")
def bprop(x, out, dout):
gradient = x * 2
dx = gradient * dout
return (dx,)
try:
net = SquareGradNet(func_path + ":CustomSquare", (3,), mstype.float32, bprop=bprop, reg=None)
dx = ops.GradOperation(sens_param=True)(net)(Tensor(x), Tensor(sens))
except Exception as e:
if os.path.exists(func_path):
os.remove(func_path)
raise e
os.remove(func_path)
dx_np = dx.asnumpy()
assert np.allclose(expect, dx_np, 0.0001, 0.0001)
@arg_mark(plat_marks=['platform_gpu'], level_mark='level1', card_mark='onecard', essential_mark='unessential')
def test_square_aot_bprop():
"""
Feature: custom aot operator, bprop(Cell), GPU
Description: pre-compile xxx.cu to xxx.so, custom operator launches xxx.so
Expectation: nn result matches numpy result
"""
context.set_context(mode=context.GRAPH_MODE)
x = np.array([1.0, 4.0, 9.0]).astype(np.float32)
sens = np.array([1.0, 1.0, 1.0]).astype(np.float32)
expect = np.array([4.0, 256.0, 2916.0]).astype(np.float32)
cmd_bprop, func_path_bprop = get_file_path_gpu("square_bprop.cu", "square_bprop.so")
check_exec_file(cmd_bprop, func_path_bprop, "square_bprop.cu", "square_bprop.so")
try:
aot_bprop = ops.Custom(func_path_bprop + ":CustomSquareBprop",
(3,), mstype.float32, "aot", reg_info=None)
except Exception as e:
if os.path.exists(func_path_bprop):
os.remove(func_path_bprop)
raise e
def bprop(x, out, dout):
res = aot_bprop(x, out, dout)
return (res,)
cmd, func_path = get_file_path_gpu("square.cu", "square.so")
check_exec_file(cmd, func_path, "square_bprop.cu", "square_bprop.so")
try:
net = SquareGradNet(func_path + ":CustomSquare", (3,), mstype.float32, bprop=bprop, reg=None)
dx = ops.GradOperation(sens_param=True)(net)(Tensor(x), Tensor(sens))
except Exception as e:
if os.path.exists(func_path):
os.remove(func_path)
if os.path.exists(func_path_bprop):
os.remove(func_path_bprop)
raise e
os.remove(func_path)
os.remove(func_path_bprop)
dx_np = dx.asnumpy()
assert np.allclose(expect, dx_np, 0.0001, 0.0001)
class AOTMultiOutputNet(Cell):
def __init__(self, func, out_shapes, out_types, bprop=None, reg=None):
super(AOTMultiOutputNet, self).__init__()
self.program = ops.Custom(func, out_shapes, out_types, "aot", bprop, reg)
self.add = ops.Add()
self.mul = ops.Mul()
def construct(self, x, y):
aot = self.program(x, y)
add_res = self.add(aot[0], aot[1])
mul_res = self.mul(add_res, aot[2])
return mul_res
multioutput_gpu_info = CustomRegOp() \
.input(0, "x1") \
.input(1, "x2") \
.output(0, "y1") \
.output(1, "y2") \
.output(2, "y3") \
.dtype_format(DataType.F32_Default, DataType.F32_Default,
DataType.F32_Default, DataType.F32_Default, DataType.F32_Default) \
.target("GPU") \
.get_op_info()
multioutput_bprop_gpu_info = CustomRegOp() \
.input(0, "x1") \
.input(1, "x2") \
.input(2, "x3") \
.input(3, "x4") \
.input(4, "x5") \
.output(0, "y1") \
.output(1, "y2") \
.dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default,
DataType.F32_Default, DataType.F32_Default, DataType.F32_Default) \
.target("GPU") \
.get_op_info()
def add_mul_div_bprop(source, execf, source_prop, execf_prop):
x = np.array([1.0, 4.0, 9.0]).astype(np.float32)
y = np.array([1.0, 1.0, 1.0]).astype(np.float32)
sens = np.array([1.0, 1.0, 1.0]).astype(np.float32)
expect_dx = np.array([5.0, 17.0, 37.0]).astype(np.float32)
expect_dy = np.array([-1.0, -16.0, -81.0]).astype(np.float32)
cmd_bprop, func_path_bprop = get_file_path_gpu(source_prop, execf_prop)
check_exec_file(cmd_bprop, func_path_bprop, source_prop, execf_prop)
try:
aot_bprop = ops.Custom(func_path_bprop + ":CustomAddMulDivBprop",
([3], [3]), (mstype.float32, mstype.float32), "aot", reg_info=multioutput_bprop_gpu_info)
except Exception as e:
if os.path.exists(func_path_bprop):
os.remove(func_path_bprop)
raise e
def bprop(x, y, out, dout):
res = aot_bprop(x, y, dout[0], dout[1], dout[2])
return res
cmd, func_path = get_file_path_gpu(source, execf)
check_exec_file(cmd, func_path, source, execf)
try:
net = AOTMultiOutputNet(func_path + ":CustomAddMulDiv", ([3], [3], [3]),
(mstype.float32, mstype.float32, mstype.float32), bprop=bprop, reg=multioutput_gpu_info)
dx, dy = ops.GradOperation(sens_param=True, get_all=True)(net)(Tensor(x), Tensor(y), Tensor(sens))
except Exception as e:
if os.path.exists(func_path):
os.remove(func_path)
if os.path.exists(func_path_bprop):
os.remove(func_path_bprop)
raise e
os.remove(func_path)
os.remove(func_path_bprop)
dx_np = dx.asnumpy()
dy_np = dy.asnumpy()
assert np.allclose(expect_dx, dx_np, 0.0001, 0.0001)
assert np.allclose(expect_dy, dy_np, 0.0001, 0.0001)
@arg_mark(plat_marks=['platform_gpu'], level_mark='level1', card_mark='onecard', essential_mark='unessential')
def test_add_mul_div_bprop_graph():
"""
Feature: custom aot operator, bprop(Cell), multiple outputs, GPU, GRAPH_MODE
Description: pre-compile xxx.cu to xxx.so, custom operator launches xxx.so
Expectation: nn result matches numpy result
"""
context.set_context(mode=context.GRAPH_MODE)
add_mul_div_bprop("add_mul_div.cu", "add_mul_div.so", "add_mul_div_bprop.cu", "add_mul_div_bprop.so")
@arg_mark(plat_marks=['platform_gpu'], level_mark='level1', card_mark='onecard', essential_mark='unessential')
def test_add_mul_div_bprop_pynative():
"""
Feature: custom aot operator, bprop(Cell), multiple outputs, GPU, PYNATIVE_MODE
Description: pre-compile xxx.cu to xxx.so, custom operator launches xxx.so
Expectation: nn result matches numpy result
"""
context.set_context(mode=context.PYNATIVE_MODE)
add_mul_div_bprop("add_mul_div.cu", "add_mul_div_pynative.so",
"add_mul_div_bprop.cu", "add_mul_div_bprop_pynative.so")
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。