代码拉取完成,页面将自动刷新
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore.ops import operations as P
from mindspore import Tensor
from mindspore.train.serialization import export
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.add = P.TensorAdd()
def construct(self, x_, y_):
return self.add(x_, y_)
def export_net():
x = np.ones([2, 2]).astype(np.float32)
y = np.ones([2, 2]).astype(np.float32)
add = Net()
output = add(Tensor(x), Tensor(y))
export(add, Tensor(x), Tensor(y), file_name='tensor_add.mindir', file_format='MINDIR')
print(x)
print(y)
print(output.asnumpy())
if __name__ == "__main__":
export_net()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。