代码拉取完成,页面将自动刷新
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
import numpy as np
import mindspore.common.dtype as mstype
import mindspore.nn as nn
import mindspore.ops.functional as F
from mindspore import Tensor
from mindspore import context
from mindspore.common.api import _cell_graph_executor
from mindspore.common.initializer import TruncatedNormal
from mindspore.communication.management import init
from mindspore.nn.loss.loss import LossBase
from mindspore.nn.optim.momentum import Momentum
from mindspore.ops import operations as P
from mindspore.parallel import _cost_model_context as cost_model_context
from mindspore.parallel import set_algo_parameters
from mindspore.parallel._utils import _reset_op_id as resset_op_id
from mindspore.train.model import Model
from mindspore.context import ParallelMode
from mindspore.communication._comm_helper import GlobalComm
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(device_id=0)
GlobalComm.CHECK_ENVS = False
init()
GlobalComm.CHECK_ENVS = True
def weight_variable():
return TruncatedNormal(0.02)
def _conv3x3(in_channels, out_channels, stride=1, padding=0, pad_mode='same'):
"""Get a conv2d layer with 3x3 kernel size."""
init_value = weight_variable()
return nn.Conv2d(in_channels, out_channels,
kernel_size=3, stride=stride, padding=padding, pad_mode=pad_mode, weight_init=init_value)
def _conv1x1(in_channels, out_channels, stride=1, padding=0, pad_mode='same'):
"""Get a conv2d layer with 1x1 kernel size."""
init_value = weight_variable()
return nn.Conv2d(in_channels, out_channels,
kernel_size=1, stride=stride, padding=padding, pad_mode=pad_mode, weight_init=init_value)
def _conv7x7(in_channels, out_channels, stride=1, padding=0, pad_mode='same'):
"""Get a conv2d layer with 7x7 kernel size."""
init_value = weight_variable()
return nn.Conv2d(in_channels, out_channels,
kernel_size=7, stride=stride, padding=padding, pad_mode=pad_mode, weight_init=init_value)
def _fused_bn(channels, momentum=0.9):
"""Get a fused batchnorm"""
return nn.BatchNorm2d(channels, momentum=momentum)
class ResidualBlock(nn.Cell):
expansion = 4
def __init__(self,
in_channels,
out_channels,
stride=1,
momentum=0.9):
super(ResidualBlock, self).__init__()
out_chls = out_channels // self.expansion
self.conv1 = _conv1x1(in_channels, out_chls, stride=1)
self.conv1.conv2d.shard(((8, 1, 1, 1), (1, 1, 1, 1)))
self.bn1 = _fused_bn(out_chls, momentum=momentum)
self.conv2 = _conv3x3(out_chls, out_chls, stride=stride)
self.conv2.conv2d.shard(((8, 1, 1, 1), (1, 1, 1, 1)))
self.bn2 = _fused_bn(out_chls, momentum=momentum)
self.conv3 = _conv1x1(out_chls, out_channels, stride=1)
self.conv3.conv2d.shard(((8, 1, 1, 1), (1, 1, 1, 1)))
self.bn3 = _fused_bn(out_channels, momentum=momentum)
self.relu = P.ReLU()
self.downsample = (in_channels != out_channels)
self.stride = stride
if self.downsample:
self.conv_down_sample = _conv1x1(in_channels, out_channels,
stride=stride)
self.conv_down_sample.conv2d.shard(((8, 1, 1, 1), (1, 1, 1, 1)))
self.bn_down_sample = _fused_bn(out_channels, momentum=momentum)
elif self.stride != 1:
self.maxpool_down = nn.MaxPool2d(kernel_size=1, stride=2, pad_mode='same')
self.add = P.Add()
def construct(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample:
identity = self.conv_down_sample(identity)
identity = self.bn_down_sample(identity)
elif self.stride != 1:
identity = self.maxpool_down(identity)
out = self.add(out, identity)
out = self.relu(out)
return out
class ResNet(nn.Cell):
def __init__(self,
block,
layer_nums,
in_channels,
out_channels,
strides=None,
num_classes=100):
super(ResNet, self).__init__()
if strides is None:
strides = [1, 2, 2, 2]
if not len(layer_nums) == len(in_channels) == len(out_channels) == 4:
raise ValueError("the length of "
"layer_num, inchannel, outchannel list must be 4!")
self.conv1 = _conv7x7(3, 64, stride=2)
self.conv1.conv2d.shard(((8, 1, 1, 1), (1, 1, 1, 1)))
self.bn1 = _fused_bn(64)
self.relu = P.ReLU()
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='same')
self.layer1 = self._make_layer(block,
layer_nums[0],
in_channel=in_channels[0],
out_channel=out_channels[0],
stride=strides[0])
self.layer2 = self._make_layer(block,
layer_nums[1],
in_channel=in_channels[1],
out_channel=out_channels[1],
stride=strides[1])
self.layer3 = self._make_layer(block,
layer_nums[2],
in_channel=in_channels[2],
out_channel=out_channels[2],
stride=strides[2])
self.layer4 = self._make_layer(block,
layer_nums[3],
in_channel=in_channels[3],
out_channel=out_channels[3],
stride=strides[3])
self.mean = P.ReduceMean(keep_dims=True)
self.end_point = nn.Dense(2048, num_classes, has_bias=True,
weight_init=weight_variable(),
bias_init=weight_variable()).add_flags_recursive(fp16=True)
self.squeeze = P.Squeeze()
self.cast = P.Cast()
def _make_layer(self, block, layer_num, in_channel, out_channel, stride):
layers = []
resblk = block(in_channel, out_channel, stride=1)
layers.append(resblk)
for _ in range(1, layer_num - 1):
resblk = block(out_channel, out_channel, stride=1)
layers.append(resblk)
resblk = block(out_channel, out_channel, stride=stride)
layers.append(resblk)
return nn.SequentialCell(layers)
def construct(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
c1 = self.maxpool(x)
c2 = self.layer1(c1)
c3 = self.layer2(c2)
c4 = self.layer3(c3)
c5 = self.layer4(c4)
out = self.mean(c5, (2, 3))
out = self.squeeze(out)
out = self.end_point(out)
return out
def resnet50(class_num=10):
return ResNet(ResidualBlock,
[3, 4, 6, 3],
[64, 256, 512, 1024],
[256, 512, 1024, 2048],
[2, 2, 2, 1],
class_num)
class SoftmaxCrossEntropyExpand(LossBase):
def __init__(self, sparse=False):
super(SoftmaxCrossEntropyExpand, self).__init__()
self.exp = P.Exp()
self.sum = P.ReduceSum(keep_dims=True)
self.onehot = P.OneHot()
self.on_value = Tensor(1.0, mstype.float32)
self.off_value = Tensor(0.0, mstype.float32)
self.div = P.Div()
self.log = P.Log()
self.sum_cross_entropy = P.ReduceSum(keep_dims=False)
self.mul = P.Mul()
self.mul2 = P.Mul()
self.cast = P.Cast()
self.mean = P.ReduceMean(keep_dims=False).add_prim_attr("cross_batch", True)
self.sparse = sparse
self.max = P.ReduceMax(keep_dims=True)
self.sub = P.Sub()
self.cast1 = P.Cast()
def construct(self, logit, label):
logit = self.cast1(logit, mstype.float32)
logit_max = self.max(logit)
exp = self.exp(self.sub(logit, logit_max))
exp_sum = self.sum(exp, -1)
softmax_result = self.div(exp, exp_sum)
if self.sparse:
label = self.onehot(label, F.shape(logit)[1], self.on_value, self.off_value)
softmax_result_log = self.log(softmax_result)
loss = self.sum_cross_entropy((self.mul(softmax_result_log, label)), -1)
loss = self.mul2(F.scalar_to_tensor(-1.0), loss)
loss = self.mean(loss, -1)
return loss
class DatasetLenet():
def __init__(self, predict, label, length=3):
self.predict = predict
self.label = label
self.index = 0
self.length = length
def __iter__(self):
return self
def __next__(self):
if self.index >= self.length:
raise StopIteration
self.index += 1
return self.predict, self.label
def reset(self):
self.index = 0
def get_dataset_size(self):
return 32
def get_repeat_count(self):
return 1
def create_tuple_iterator(self, num_epochs=-1, do_copy=True):
return self
def test_train_32k_8p(batch_size=32, num_classes=32768):
dev_num = 8
context.set_auto_parallel_context(parallel_mode=ParallelMode.AUTO_PARALLEL, device_num=dev_num)
set_algo_parameters(elementwise_op_strategy_follow=True)
resset_op_id()
np.random.seed(6)
input_np = np.ones([batch_size, 3, 224, 224]).astype(np.float32)
label_np = np.zeros([batch_size]).astype(np.int32)
for i in range(0, batch_size):
label_np[i] = i % num_classes
dataset = DatasetLenet(Tensor(input_np), Tensor(label_np), 1)
net = resnet50(num_classes)
loss = SoftmaxCrossEntropyExpand(sparse=True)
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, 0.9)
model = Model(net, loss_fn=loss, optimizer=opt)
model.train(5, dataset, dataset_sink_mode=False)
strategies = _cell_graph_executor._get_shard_strategy(model._train_network)
for (k, v) in strategies.items():
if re.search('Conv2D-op', k) is not None:
assert v[0][0] == dev_num
elif re.search('MatMul-op', k) is not None:
assert v == [[dev_num, 1], [1, 1]]
elif re.search('ReduceSum-op', k) is not None:
assert v == [[dev_num, 1]]
allreduce_fusion_dict = _cell_graph_executor._get_allreduce_fusion(model._train_network)
print(allreduce_fusion_dict)
return allreduce_fusion_dict
def train_32k_8p_fusion1(batch_size=32, num_classes=32768): # 1048576 #131072 #32768 #8192
cost_model_context.set_cost_model_context(costmodel_gamma=0.001, costmodel_beta=400.0)
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_algorithm=1)
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_times=2)
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_tail_percent=0.5)
allreduce_fusion_dict = test_train_32k_8p(batch_size, num_classes)
expect_dict = {'end_point.bias': 2,
'end_point.weight': 2,
'layer4.2.bn3.beta': 2,
'layer4.2.bn3.gamma': 2,
'layer4.2.conv3.weight': 2,
'layer4.2.bn2.beta': 2,
'layer4.2.bn2.gamma': 2,
'layer4.2.conv2.weight': 2,
'layer4.2.bn1.beta': 2,
'layer4.2.bn1.gamma': 2,
'layer4.2.conv1.weight': 2,
'layer4.1.bn3.beta': 2,
'layer4.1.bn3.gamma': 2,
'layer4.1.conv3.weight': 2,
'layer4.1.bn2.beta': 2,
'layer4.1.bn2.gamma': 2,
'layer4.1.conv2.weight': 2,
'layer4.1.bn1.beta': 2,
'layer4.1.bn1.gamma': 2,
'layer4.1.conv1.weight': 2,
'layer4.0.bn_down_sample.beta': 2,
'layer4.0.bn_down_sample.gamma': 2,
'layer4.0.conv_down_sample.weight': 2,
'layer4.0.bn3.beta': 2,
'layer4.0.bn3.gamma': 2,
'layer4.0.conv3.weight': 2,
'layer4.0.bn2.beta': 2,
'layer4.0.bn2.gamma': 2,
'layer4.0.conv2.weight': 2,
'layer4.0.bn1.beta': 2,
'layer4.0.bn1.gamma': 2,
'layer4.0.conv1.weight': 2,
'layer3.5.bn3.beta': 2,
'layer3.5.bn3.gamma': 2,
'layer3.5.conv3.weight': 2,
'layer3.5.bn2.beta': 2,
'layer3.5.bn2.gamma': 2,
'layer3.5.conv2.weight': 2,
'layer3.5.bn1.beta': 2,
'layer3.5.bn1.gamma': 2,
'layer3.5.conv1.weight': 2,
'layer3.4.bn3.beta': 2,
'layer3.4.bn3.gamma': 2,
'layer3.4.conv3.weight': 2,
'layer3.4.bn2.beta': 2,
'layer3.4.bn2.gamma': 2,
'layer3.4.conv2.weight': 2,
'layer3.4.bn1.beta': 2,
'layer3.4.bn1.gamma': 2,
'layer3.4.conv1.weight': 2,
'layer3.3.bn3.beta': 2,
'layer3.3.bn3.gamma': 2,
'layer3.3.conv3.weight': 2,
'layer3.3.bn2.beta': 2,
'layer3.3.bn2.gamma': 2,
'layer3.3.conv2.weight': 2,
'layer3.3.bn1.beta': 2,
'layer3.3.bn1.gamma': 2,
'layer3.3.conv1.weight': 2,
'layer3.2.bn3.beta': 2,
'layer3.2.bn3.gamma': 2,
'layer3.2.conv3.weight': 2,
'layer3.2.bn2.beta': 2,
'layer3.2.bn2.gamma': 2,
'layer3.2.conv2.weight': 2,
'layer3.2.bn1.beta': 2,
'layer3.2.bn1.gamma': 2,
'layer3.2.conv1.weight': 2,
'layer3.1.bn3.beta': 2,
'layer3.1.bn3.gamma': 2,
'layer3.1.conv3.weight': 2,
'layer3.1.bn2.beta': 2,
'layer3.1.bn2.gamma': 2,
'layer3.1.conv2.weight': 2,
'layer3.1.bn1.beta': 2,
'layer3.1.bn1.gamma': 2,
'layer3.1.conv1.weight': 2,
'layer3.0.bn_down_sample.beta': 2,
'layer3.0.bn_down_sample.gamma': 2,
'layer3.0.conv_down_sample.weight': 2,
'layer3.0.bn3.beta': 2,
'layer3.0.bn3.gamma': 2,
'layer3.0.conv3.weight': 2,
'layer3.0.bn2.beta': 2,
'layer3.0.bn2.gamma': 2,
'layer3.0.conv2.weight': 2,
'layer3.0.bn1.beta': 2,
'layer3.0.bn1.gamma': 2,
'layer3.0.conv1.weight': 2,
'layer2.3.bn3.beta': 2,
'layer2.3.bn3.gamma': 2,
'layer2.3.conv3.weight': 2,
'layer2.3.bn2.beta': 2,
'layer2.3.bn2.gamma': 2,
'layer2.3.conv2.weight': 2,
'layer2.3.bn1.beta': 2,
'layer2.3.bn1.gamma': 2,
'layer2.3.conv1.weight': 2,
'layer2.2.bn3.beta': 2,
'layer2.2.bn3.gamma': 2,
'layer2.2.conv3.weight': 2,
'layer2.2.bn2.beta': 2,
'layer2.2.bn2.gamma': 2,
'layer2.2.conv2.weight': 2,
'layer2.2.bn1.beta': 2,
'layer2.2.bn1.gamma': 2,
'layer2.2.conv1.weight': 2,
'layer2.1.bn3.beta': 2,
'layer2.1.bn3.gamma': 2,
'layer2.1.conv3.weight': 2,
'layer2.1.bn2.beta': 2,
'layer2.1.bn2.gamma': 2,
'layer2.1.conv2.weight': 2,
'layer2.1.bn1.beta': 2,
'layer2.1.bn1.gamma': 2,
'layer2.1.conv1.weight': 2,
'layer2.0.bn_down_sample.beta': 2,
'layer2.0.bn_down_sample.gamma': 2,
'layer2.0.conv_down_sample.weight': 2,
'layer2.0.bn3.beta': 2,
'layer2.0.bn3.gamma': 2,
'layer2.0.conv3.weight': 2,
'layer2.0.bn2.beta': 2,
'layer2.0.bn2.gamma': 2,
'layer2.0.conv2.weight': 2,
'layer2.0.bn1.beta': 2,
'layer2.0.bn1.gamma': 2,
'layer2.0.conv1.weight': 2,
'layer1.2.bn3.beta': 2,
'layer1.2.bn3.gamma': 2,
'layer1.2.conv3.weight': 2,
'layer1.2.bn2.beta': 2,
'layer1.2.bn2.gamma': 2,
'layer1.2.conv2.weight': 2,
'layer1.2.bn1.beta': 2,
'layer1.2.bn1.gamma': 2,
'layer1.2.conv1.weight': 2,
'layer1.1.bn3.beta': 2,
'layer1.1.bn3.gamma': 2,
'layer1.1.conv3.weight': 2,
'layer1.1.bn2.beta': 2,
'layer1.1.bn2.gamma': 2,
'layer1.1.conv2.weight': 2,
'layer1.1.bn1.beta': 2,
'layer1.1.bn1.gamma': 2,
'layer1.1.conv1.weight': 2,
'layer1.0.bn_down_sample.beta': 2,
'layer1.0.bn_down_sample.gamma': 2,
'layer1.0.conv_down_sample.weight': 2,
'layer1.0.bn3.beta': 2,
'layer1.0.bn3.gamma': 2,
'layer1.0.conv3.weight': 2,
'layer1.0.bn2.beta': 2,
'layer1.0.bn2.gamma': 2,
'layer1.0.conv2.weight': 2,
'layer1.0.bn1.beta': 2,
'layer1.0.bn1.gamma': 2,
'layer1.0.conv1.weight': 2,
'bn1.beta': 1,
'bn1.gamma': 1,
'conv1.weight': 1}
assert allreduce_fusion_dict == expect_dict
cost_model_context.reset_cost_model_context()
def train_32k_8p_fusion2(batch_size=32, num_classes=32768): # 1048576 #131072 #32768 #8192
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_algorithm=2)
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_tail_time=0.1)
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_allreduce_inherent_time=0.05)
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_allreduce_bandwidth=0.000001)
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_computation_time_parameter=0.0000015)
allreduce_fusion_dict = test_train_32k_8p(batch_size, num_classes)
expect_dict = {'end_point.bias': 2,
'end_point.weight': 2,
'layer4.2.bn3.beta': 2,
'layer4.2.bn3.gamma': 2,
'layer4.2.conv3.weight': 2,
'layer4.2.bn2.beta': 2,
'layer4.2.bn2.gamma': 2,
'layer4.2.conv2.weight': 2,
'layer4.2.bn1.beta': 2,
'layer4.2.bn1.gamma': 2,
'layer4.2.conv1.weight': 2,
'layer4.1.bn3.beta': 2,
'layer4.1.bn3.gamma': 2,
'layer4.1.conv3.weight': 2,
'layer4.1.bn2.beta': 2,
'layer4.1.bn2.gamma': 2,
'layer4.1.conv2.weight': 2,
'layer4.1.bn1.beta': 2,
'layer4.1.bn1.gamma': 2,
'layer4.1.conv1.weight': 2,
'layer4.0.bn_down_sample.beta': 2,
'layer4.0.bn_down_sample.gamma': 2,
'layer4.0.conv_down_sample.weight': 2,
'layer4.0.bn3.beta': 2,
'layer4.0.bn3.gamma': 2,
'layer4.0.conv3.weight': 2,
'layer4.0.bn2.beta': 2,
'layer4.0.bn2.gamma': 2,
'layer4.0.conv2.weight': 2,
'layer4.0.bn1.beta': 2,
'layer4.0.bn1.gamma': 2,
'layer4.0.conv1.weight': 2,
'layer3.5.bn3.beta': 2,
'layer3.5.bn3.gamma': 2,
'layer3.5.conv3.weight': 2,
'layer3.5.bn2.beta': 2,
'layer3.5.bn2.gamma': 2,
'layer3.5.conv2.weight': 2,
'layer3.5.bn1.beta': 2,
'layer3.5.bn1.gamma': 2,
'layer3.5.conv1.weight': 2,
'layer3.4.bn3.beta': 2,
'layer3.4.bn3.gamma': 2,
'layer3.4.conv3.weight': 2,
'layer3.4.bn2.beta': 2,
'layer3.4.bn2.gamma': 2,
'layer3.4.conv2.weight': 2,
'layer3.4.bn1.beta': 2,
'layer3.4.bn1.gamma': 2,
'layer3.4.conv1.weight': 2,
'layer3.3.bn3.beta': 2,
'layer3.3.bn3.gamma': 2,
'layer3.3.conv3.weight': 2,
'layer3.3.bn2.beta': 2,
'layer3.3.bn2.gamma': 2,
'layer3.3.conv2.weight': 2,
'layer3.3.bn1.beta': 2,
'layer3.3.bn1.gamma': 2,
'layer3.3.conv1.weight': 2,
'layer3.2.bn3.beta': 2,
'layer3.2.bn3.gamma': 2,
'layer3.2.conv3.weight': 2,
'layer3.2.bn2.beta': 2,
'layer3.2.bn2.gamma': 2,
'layer3.2.conv2.weight': 2,
'layer3.2.bn1.beta': 2,
'layer3.2.bn1.gamma': 2,
'layer3.2.conv1.weight': 2,
'layer3.1.bn3.beta': 2,
'layer3.1.bn3.gamma': 2,
'layer3.1.conv3.weight': 2,
'layer3.1.bn2.beta': 2,
'layer3.1.bn2.gamma': 2,
'layer3.1.conv2.weight': 2,
'layer3.1.bn1.beta': 2,
'layer3.1.bn1.gamma': 2,
'layer3.1.conv1.weight': 2,
'layer3.0.bn_down_sample.beta': 2,
'layer3.0.bn_down_sample.gamma': 2,
'layer3.0.conv_down_sample.weight': 2,
'layer3.0.bn3.beta': 2,
'layer3.0.bn3.gamma': 2,
'layer3.0.conv3.weight': 2,
'layer3.0.bn2.beta': 2,
'layer3.0.bn2.gamma': 2,
'layer3.0.conv2.weight': 2,
'layer3.0.bn1.beta': 2,
'layer3.0.bn1.gamma': 2,
'layer3.0.conv1.weight': 2,
'layer2.3.bn3.beta': 2,
'layer2.3.bn3.gamma': 2,
'layer2.3.conv3.weight': 2,
'layer2.3.bn2.beta': 2,
'layer2.3.bn2.gamma': 2,
'layer2.3.conv2.weight': 2,
'layer2.3.bn1.beta': 2,
'layer2.3.bn1.gamma': 2,
'layer2.3.conv1.weight': 2,
'layer2.2.bn3.beta': 2,
'layer2.2.bn3.gamma': 2,
'layer2.2.conv3.weight': 2,
'layer2.2.bn2.beta': 2,
'layer2.2.bn2.gamma': 2,
'layer2.2.conv2.weight': 2,
'layer2.2.bn1.beta': 2,
'layer2.2.bn1.gamma': 2,
'layer2.2.conv1.weight': 2,
'layer2.1.bn3.beta': 2,
'layer2.1.bn3.gamma': 2,
'layer2.1.conv3.weight': 2,
'layer2.1.bn2.beta': 2,
'layer2.1.bn2.gamma': 2,
'layer2.1.conv2.weight': 2,
'layer2.1.bn1.beta': 2,
'layer2.1.bn1.gamma': 2,
'layer2.1.conv1.weight': 2,
'layer2.0.bn_down_sample.beta': 2,
'layer2.0.bn_down_sample.gamma': 2,
'layer2.0.conv_down_sample.weight': 2,
'layer2.0.bn3.beta': 2,
'layer2.0.bn3.gamma': 2,
'layer2.0.conv3.weight': 2,
'layer2.0.bn2.beta': 2,
'layer2.0.bn2.gamma': 2,
'layer2.0.conv2.weight': 2,
'layer2.0.bn1.beta': 2,
'layer2.0.bn1.gamma': 2,
'layer2.0.conv1.weight': 2,
'layer1.2.bn3.beta': 2,
'layer1.2.bn3.gamma': 2,
'layer1.2.conv3.weight': 2,
'layer1.2.bn2.beta': 2,
'layer1.2.bn2.gamma': 2,
'layer1.2.conv2.weight': 2,
'layer1.2.bn1.beta': 2,
'layer1.2.bn1.gamma': 2,
'layer1.2.conv1.weight': 2,
'layer1.1.bn3.beta': 2,
'layer1.1.bn3.gamma': 2,
'layer1.1.conv3.weight': 2,
'layer1.1.bn2.beta': 2,
'layer1.1.bn2.gamma': 2,
'layer1.1.conv2.weight': 2,
'layer1.1.bn1.beta': 2,
'layer1.1.bn1.gamma': 2,
'layer1.1.conv1.weight': 2,
'layer1.0.bn_down_sample.beta': 2,
'layer1.0.bn_down_sample.gamma': 2,
'layer1.0.conv_down_sample.weight': 2,
'layer1.0.bn3.beta': 2,
'layer1.0.bn3.gamma': 2,
'layer1.0.conv3.weight': 2,
'layer1.0.bn2.beta': 2,
'layer1.0.bn2.gamma': 2,
'layer1.0.conv2.weight': 1,
'layer1.0.bn1.beta': 1,
'layer1.0.bn1.gamma': 1,
'layer1.0.conv1.weight': 1,
'bn1.beta': 1,
'bn1.gamma': 1,
'conv1.weight': 1}
assert allreduce_fusion_dict == expect_dict
cost_model_context.reset_cost_model_context()
def test_train_64k_8p(batch_size=32, num_classes=65536): # 1048576 #131072 #32768 #8192
dev_num = 8
context.set_auto_parallel_context(parallel_mode=ParallelMode.AUTO_PARALLEL, device_num=dev_num)
cost_model_context.set_cost_model_context(costmodel_gamma=0.001, costmodel_beta=400.0)
set_algo_parameters(elementwise_op_strategy_follow=True)
resset_op_id()
np.random.seed(6)
input_np = np.ones([batch_size, 3, 224, 224]).astype(np.float32)
label_np = np.zeros([batch_size]).astype(np.int32)
for i in range(0, batch_size):
label_np[i] = i % num_classes
dataset = DatasetLenet(Tensor(input_np), Tensor(label_np), 1)
net = resnet50(num_classes)
loss = SoftmaxCrossEntropyExpand(sparse=True)
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, 0.9)
model = Model(net, loss_fn=loss, optimizer=opt)
model.train(5, dataset, dataset_sink_mode=False)
strategies = _cell_graph_executor._get_shard_strategy(model._train_network)
for (k, v) in strategies.items():
if re.search('Conv2D-op', k) is not None:
assert v[0][0] == dev_num
elif re.search('MatMul-op', k) is not None:
assert v == [[1, 1], [dev_num, 1]]
elif re.search('ReduceSum-op', k) is not None:
assert v == [[1, dev_num]]
def test_train_8k_8p_gpu(batch_size=32, num_classes=8192):
dev_num = 8
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
context.set_auto_parallel_context(parallel_mode=ParallelMode.AUTO_PARALLEL, device_num=dev_num)
set_algo_parameters(elementwise_op_strategy_follow=True)
#set_algo_parameters(enable_algo_approxi=True)
resset_op_id()
np.random.seed(6)
input_np = np.ones([batch_size, 3, 224, 224]).astype(np.float32)
label_np = np.zeros([batch_size]).astype(np.int32)
for i in range(0, batch_size):
label_np[i] = i % num_classes
dataset = DatasetLenet(Tensor(input_np), Tensor(label_np), 1)
net = resnet50(num_classes)
loss = SoftmaxCrossEntropyExpand(sparse=True)
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, 0.9)
model = Model(net, loss_fn=loss, optimizer=opt)
model.train(5, dataset, dataset_sink_mode=False)
strategies = _cell_graph_executor._get_shard_strategy(model._train_network)
for (k, v) in strategies.items():
if re.search('Conv2D-op', k) is not None:
assert v[0][0] == dev_num
elif re.search('MatMul-op', k) is not None:
assert v == [[1, 1], [dev_num, 1]]
elif re.search('ReduceSum-op', k) is not None:
assert v == [[1, dev_num]]
def test_train_8k_8p_gpu_approxi(batch_size=32, num_classes=8192):
dev_num = 8
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
context.set_auto_parallel_context(parallel_mode=ParallelMode.AUTO_PARALLEL, device_num=dev_num)
set_algo_parameters(enable_algo_approxi=True)
resset_op_id()
np.random.seed(6)
input_np = np.ones([batch_size, 3, 224, 224]).astype(np.float32)
label_np = np.zeros([batch_size]).astype(np.int32)
for i in range(0, batch_size):
label_np[i] = i % num_classes
dataset = DatasetLenet(Tensor(input_np), Tensor(label_np), 1)
net = resnet50(num_classes)
loss = SoftmaxCrossEntropyExpand(sparse=True)
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, 0.9)
model = Model(net, loss_fn=loss, optimizer=opt)
model.train(5, dataset, dataset_sink_mode=False)
strategies = _cell_graph_executor._get_shard_strategy(model._train_network)
for (k, v) in strategies.items():
if re.search('Conv2D-op', k) is not None:
assert v[0][0] == dev_num
elif re.search('MatMul-op', k) is not None:
assert v == [[1, 1], [dev_num, 1]]
elif re.search('ReduceSum-op', k) is not None:
assert v == [[1, dev_num]]
def test_train_4k_8p_gpu(batch_size=32, num_classes=4096):
dev_num = 8
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
context.set_auto_parallel_context(parallel_mode=ParallelMode.AUTO_PARALLEL, device_num=dev_num)
set_algo_parameters(elementwise_op_strategy_follow=True)
resset_op_id()
np.random.seed(6)
input_np = np.ones([batch_size, 3, 224, 224]).astype(np.float32)
label_np = np.zeros([batch_size]).astype(np.int32)
for i in range(0, batch_size):
label_np[i] = i % num_classes
dataset = DatasetLenet(Tensor(input_np), Tensor(label_np), 1)
net = resnet50(num_classes)
loss = SoftmaxCrossEntropyExpand(sparse=True)
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, 0.9)
model = Model(net, loss_fn=loss, optimizer=opt)
model.train(5, dataset, dataset_sink_mode=False)
strategies = _cell_graph_executor._get_shard_strategy(model._train_network)
for (k, v) in strategies.items():
if re.search('Conv2D-op', k) is not None:
assert v[0][0] == dev_num
elif re.search('MatMul-op', k) is not None:
assert v == [[dev_num, 1], [1, 1]]
elif re.search('ReduceSum-op', k) is not None:
assert v == [[dev_num, 1]]
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。