代码拉取完成,页面将自动刷新
.. py:class:: mindspore.dataset.IWSLT2016Dataset(dataset_dir, usage=None, language_pair=None, valid_set=None, test_set=None, num_samples=None, shuffle=Shuffle.GLOBAL, num_shards=None, shard_id=None, num_parallel_workers=None, cache=None) IWSLT2016(International Workshop on Spoken Language Translation)数据集。 生成的数据集有两列 `[text, translation]` 。 `text` 列的数据类型是string。 `translation` 列的数据类型是string。 参数: - **dataset_dir** (str) - 包含数据集文件的根目录路径。 - **usage** (str, 可选) - 指定数据集的子集,可取值为 ``'train'`` 、 ``'valid'`` 、 ``'test'`` 或 ``'all'`` 。默认值: ``None`` ,读取全部样本。 - **language_pair** (sequence, 可选) - 包含源语言和目标语言的序列,支持的值为 ``('en', 'fr')`` 、 ``('en', 'de')`` 、 ``('en', 'cs')`` 、 ``('en', 'ar')`` 、 ``('de', 'en')`` 、 ``('cs', 'en')`` 、 ``('ar', 'en')`` 。默认值: ``None``,默认为 ``('de', 'en')`` 。 - **valid_set** (str, 可选) - 标识验证集的字符串,支持的值为 ``'dev2010'`` 、 ``'tst2010'`` 、 ``'tst2011'`` 、 ``'tst2012'`` 、 ``'tst2013'`` 和 ``'tst2014'`` 。默认值: ``None``,默认为 ``'tst2013'`` 。 - **test_set** (str, 可选) - 识别测试集的字符串,支持的值为 ``'dev2010'`` 、 ``'tst2010'`` 、 ``'tst2011'`` 、 ``'tst2012'`` 、 ``'tst2013'`` 和 ``'tst2014'`` 。默认值: ``None``,默认为 ``'tst2014'`` 。 - **num_samples** (int, 可选) - 指定从数据集中读取的样本数。默认值: ``None`` ,读取所有样本。 - **shuffle** (Union[bool, :class:`~.dataset.Shuffle`], 可选) - 每个epoch中数据混洗的模式,支持传入bool类型与枚举类型进行指定。默认值: ``Shuffle.GLOBAL`` 。 如果 `shuffle` 为 ``False`` ,则不混洗,如果 `shuffle` 为 ``True`` ,等同于将 `shuffle` 设置为 ``mindspore.dataset.Shuffle.GLOBAL`` 。 通过传入枚举变量设置数据混洗的模式: - ``Shuffle.GLOBAL`` :混洗文件和样本。 - ``Shuffle.FILES`` :仅混洗文件。 - **num_shards** (int, 可选) - 指定分布式训练时将数据集进行划分的分片数。默认值: ``None`` 。指定此参数后, `num_samples` 表示每个分片的最大样本数。 - **shard_id** (int, 可选) - 指定分布式训练时使用的分片ID号。默认值: ``None`` 。只有当指定了 `num_shards` 时才能指定此参数。 - **num_parallel_workers** (int, 可选) - 指定读取数据的工作线程数。默认值: ``None`` ,使用全局默认线程数(8),也可以通过 :func:`mindspore.dataset.config.set_num_parallel_workers` 配置全局线程数。 - **cache** (:class:`~.dataset.DatasetCache`, 可选) - 单节点数据缓存服务,用于加快数据集处理,详情请阅读 `单节点数据缓存 <https://www.mindspore.cn/tutorials/experts/zh-CN/r2.2/dataset/cache.html>`_ 。默认值: ``None`` ,不使用缓存。 异常: - **RuntimeError** - `dataset_dir` 参数所指向的文件目录不存在或缺少数据集文件。 - **RuntimeError** - 指定了 `num_shards` 参数,但是未指定 `shard_id` 参数。 - **RuntimeError** - 指定了 `shard_id` 参数,但是未指定 `num_shards` 参数。 - **ValueError** - `num_parallel_workers` 参数超过系统最大线程数。 教程样例: - `使用数据Pipeline加载 & 处理数据集 <https://www.mindspore.cn/docs/zh-CN/r2.2/api_python/samples/dataset/dataset_gallery.html>`_ **关于IWSLT2016数据集:** IWSLT是一个专门讨论口译各个方面的重要年度科学会议。IWSLT评估活动中的MT任务被构成一个数据集,该数据集可通过 `wit3 <https://wit3.fbk.eu>`_ 公开获取。 IWSLT2016数据集包括从英语到阿拉伯语、捷克、法语和德语的翻译,以及从阿拉伯语、捷克、法语和德语到英语的翻译。 可以将原始IWSLT2016数据集文件解压缩到此目录结构中,并由MindSpore的API读取。解压后,还需要将要读取的数据集解压到指定文件夹中。例如,如果要读取de-en的数据集,则需要解压缩de/en目录下的tgz文件,数据集位于解压缩文件夹中。 .. code-block:: . └── iwslt2016_dataset_directory ├── subeval_files └── texts ├── ar │ └── en │ └── ar-en ├── cs │ └── en │ └── cs-en ├── de │ └── en │ └── de-en │ ├── IWSLT16.TED.dev2010.de-en.de.xml │ ├── train.tags.de-en.de │ ├── ... ├── en │ ├── ar │ │ └── en-ar │ ├── cs │ │ └── en-cs │ ├── de │ │ └── en-de │ └── fr │ └── en-fr └── fr └── en └── fr-en **引用:** .. code-block:: @inproceedings{cettoloEtAl:EAMT2012, Address = {Trento, Italy}, Author = {Mauro Cettolo and Christian Girardi and Marcello Federico}, Booktitle = {Proceedings of the 16$^{th}$ Conference of the European Association for Machine Translation (EAMT)}, Date = {28-30}, Month = {May}, Pages = {261--268}, Title = {WIT$^3$: Web Inventory of Transcribed and Translated Talks}, Year = {2012}}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。