代码拉取完成,页面将自动刷新
.. py:class:: mindspore.nn.AvgPool3d(kernel_size=1, stride=1, pad_mode='valid', padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None) 在一个输入Tensor上应用3D平均池化运算,输入Tensor可看成是由一系列3D平面组成的。 通常,输入的shape为 :math:`(N_{in}, C_{in}, D_{in}, H_{in}, W_{in})` ,AvgPool3D输出 :math:`(D_{in}, H_{in}, W_{in})` 维度的区域平均值。给定 `kernel_size` 为 :math:`ks = (d_{ker}, h_{ker}, w_{ker})` 和 `stride` 为 :math:`s = (s_0, s_1, s_2)`,公式如下。 .. warning:: `kernel_size` 在[1, 255]的范围内取值。`stride` 在[1, 63]的范围内取值。 .. math:: \text{output}(N_i, C_j, d, h, w) = \frac{1}{d_{ker} * h_{ker} * w_{ker}} \sum_{l=0}^{d_{ker}-1} \sum_{m=0}^{h_{ker}-1} \sum_{n=0}^{w_{ker}-1} \text{input}(N_i, C_j, s_0 \times d + l, s_1 \times h + m, s_2 \times w + n) 参数: - **kernel_size** (Union[int, tuple[int]],可选) - 指定池化核尺寸大小。如果为整数或单元素tuple,则同时代表池化核的深度,高度和宽度。如果为tuple且长度不为 ``1`` ,其值必须包含三个正整数,分别表示池化核的深度,高度和宽度。默认值: ``1`` 。 - **stride** (Union[int, tuple[int]],可选) - 池化操作的移动步长。如果为整数或单元素tuple,则同时代表池化核的深度,高度和宽度方向上的移动步长。如果为tuple且长度不为 ``1`` ,其值必须包含三个整数值,分别表示池化核的深度,高度和宽度方向上的移动步长。取值必须为正整数。默认值: ``1`` 。 - **pad_mode** (str,可选) - 指定填充模式,填充值为0。可选值为 ``"same"`` , ``"valid"`` 或 ``"pad"`` 。默认值: ``"valid"`` 。 - ``"same"``:在输入的深度、高度和宽度维度进行填充,使得当 `stride` 为 ``1`` 时,输入和输出的shape一致。待填充的量由算子内部计算,若为偶数,则均匀地填充在四周,若为奇数,多余的填充量将补充在前方/底部/右侧。如果设置了此模式, `padding` 必须为0。 - ``"valid"``:不对输入进行填充,返回输出可能的最大深度、高度和宽度,不能构成一个完整stride的额外的像素将被丢弃。如果设置了此模式, `padding` 必须为0。 - ``"pad"``:对输入填充指定的量。在这种模式下,在输入的深度、高度和宽度方向上填充的量由 `padding` 参数指定。如果设置此模式, `padding` 必须大于或等于0。 - **padding** (Union(int, tuple[int], list[int]),可选) - 池化填充值,只有 `pad_mode` 为"pad"时才能设置为非 ``0`` 。默认值: ``0`` 。只支持以下情况: - `padding` 为一个整数或包含一个整数的tuple/list,此情况下分别在输入的前后上下左右六个方向进行 `padding` 次的填充。 - `padding` 为一个包含三个int的tuple/list,此情况下在输入的前后进行 `padding[0]` 次的填充,上下进行 `padding[1]` 次的填充,在输入的左右进行 `padding[2]` 次的填充。 - **ceil_mode** (bool,可选) - 若为 ``True`` ,使用ceil来计算输出shape。若为 ``False`` ,使用floor来计算输出shape。默认值: ``False`` 。 - **count_include_pad** (bool,可选) - 平均计算是否包括零填充。默认值: ``True`` 。 - **divisor_override** (int,可选) - 如果被指定为非0参数,该参数将会在平均计算中被用作除数,否则将会使用 `kernel_size` 作为除数,默认值: ``None`` 。 输入: - **x** (Tensor) - shape为 :math:`(N, C, D_{in}, H_{in}, W_{in})` 或者 :math:`(C, D_{in}, H_{in}, W_{in})` 的Tensor。数据类型为float16、float32和float64。 输出: shape为 :math:`(N, C, D_{out}, H_{out}, W_{out})` 或者 :math:`(C, D_{out}, H_{out}, W_{out})` 的Tensor。数据类型与 `x` 一致。 其中,如果 `pad_mode` 为 `pad` 模式时,输出的shape计算公式如下: .. math:: D_{out} = \left\lfloor\frac{D_{in} + 2 \times \text{padding}[0] - \text{kernel_size}[0]}{\text{stride}[0]} + 1\right\rfloor .. math:: H_{out} = \left\lfloor\frac{H_{in} + 2 \times \text{padding}[1] - \text{kernel_size}[1]}{\text{stride}[1]} + 1\right\rfloor .. math:: W_{out} = \left\lfloor\frac{W_{in} + 2 \times \text{padding}[2] - \text{kernel_size}[2]}{\text{stride}[2]} + 1\right\rfloor 异常: - **TypeError** - `kernel_size` 既不是整数也不是元组。 - **TypeError** - `stride` 既不是整数也不是元组。 - **TypeError** - `padding` 既不是整数也不是元组/列表。 - **TypeError** - `ceil_mode` 或 `count_include_pad` 不是bool。 - **TypeError** - `divisor_override` 不是整数。 - **ValueError** - `kernel_size` 或者 `stride` 中的数字不是正数。 - **ValueError** - `kernel_size` 或 `stride` 是一个长度不为3的tuple。 - **ValueError** - `padding` 为一个tuple/list时,长度不为1或者3。 - **ValueError** - `padding` 的元素小于0。 - **ValueError** - `x` 的shape长度不等于4或5。 - **ValueError** - `divisor_override` 小于等于0。 - **ValueError** - `pad_mode` 不为 "pad" 的时候 `padding` 为非0。
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。