代码拉取完成,页面将自动刷新
.. py:class:: mindspore.dataset.SQuADDataset(dataset_dir, usage=None, num_samples=None, num_parallel_workers=None, shuffle=Shuffle.GLOBAL, num_shards=None, shard_id=None, cache=None) SQuAD 1.1和SQuAD 2.0数据集。 不同版本和子集生成的数据集具有相同的列: `[context, question, text, answer_start]`。 `context` 列的数据类型为string。 `question` 列的数据类型为string。 `text` 列为上下文中的回答,数据类型为string。 `answer_start` 列为上下文中回答的起始索引,数据类型为uint32。 参数: - **dataset_dir** (str) - 包含数据集文件的根目录路径。 - **usage** (str, 可选) - 指定数据集的子集,可取值为 ``'train'`` 、 ``'dev'`` 或 ``'all'`` 。默认值: ``None`` ,读取全部样本。 - **num_samples** (int, 可选) - 指定从数据集中读取的样本数。默认值: ``None`` ,读取全部样本。 - **num_parallel_workers** (int, 可选) - 指定读取数据的工作线程数。默认值: ``None`` ,使用全局默认线程数(8),也可以通过 :func:`mindspore.dataset.config.set_num_parallel_workers` 配置全局线程数。 - **shuffle** (Union[bool, :class:`~.dataset.Shuffle`], 可选) - 是否混洗数据集。默认值: ``Shuffle.GLOBAL`` 。 如果输入 ``False`` ,将不进行混洗。 如果输入 ``True`` ,效果与设置 `mindspore.dataset.Shuffle.GLOBAL` 相同。 如果输入Shuffle枚举值,效果如下表所示: - ``Shuffle.GLOBAL`` :混洗文件和文件中的数据。 - ``Shuffle.FILES`` :仅混洗文件。 - **num_shards** (int, 可选) - 指定分布式训练时将数据集进行划分的分片数。默认值: ``None`` 。指定此参数后, `num_samples` 表示每个分片的最大样本数。 - **shard_id** (int, 可选) - 指定分布式训练时使用的分片ID号。默认值: ``None`` 。只有当指定了 `num_shards` 时才能指定此参数。 - **cache** (:class:`~.dataset.DatasetCache`, 可选) - 单节点数据缓存服务,用于加快数据集处理,详情请阅读 `单节点数据缓存 <https://www.mindspore.cn/tutorials/experts/zh-CN/master/dataset/cache.html>`_ 。默认值: ``None`` ,不使用缓存。 异常: - **RuntimeError** - `dataset_dir` 路径下不包含数据文件。 - **ValueError** - `num_parallel_workers` 参数超过系统最大线程数。 - **RuntimeError** - 指定了 `num_shards` 参数,但是未指定 `shard_id` 参数。 - **RuntimeError** - 指定了 `shard_id` 参数,但是未指定 `num_shards` 参数。 - **ValueError** - 如果 `shard_id` 取值不在[0, `num_shards` )范围。 教程样例: - `使用数据Pipeline加载 & 处理数据集 <https://www.mindspore.cn/docs/zh-CN/master/api_python/samples/dataset/dataset_gallery.html>`_ **关于SQuAD数据集:** SQuAD(Stanford Question Answering Dataset)是一个阅读理解数据集,由众人对一组维基百科文章提出的问题组成, 每个问题的答案都是相应阅读段落中的一段文字或范围,否则问题可能无法回答。 SQuAD 1.1,即SQuAD数据集的前一个版本,包含500多篇文章的100,000多个问题-答案对。SQuAD 2.0除包含SQuAD 1.1中的 100,000个问题外,还补充了超过50,000个由贡献者编写的不可回答的对抗性问题,它们看起来与可回答的问题类似。为了 在SQuAD 2.0中取得好成绩,系统不仅要尽量回答可回答的问题,而且要能够在段落中不存在答案时放弃回答。 您可以将数据集解压并构建成以下目录结构,并通过MindSpore的API进行读取。 SQuAD 1.1: .. code-block:: . └── SQuAD1 ├── train-v1.1.json └── dev-v1.1.json SQuAD 2.0: .. code-block:: . └── SQuAD2 ├── train-v2.0.json └── dev-v2.0.json **引用:** .. code-block:: @misc{rajpurkar2016squad, title = {SQuAD: 100,000+ Questions for Machine Comprehension of Text}, author = {Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang}, year = {2016}, eprint = {1606.05250}, archivePrefix = {arXiv}, primaryClass = {cs.CL} } @misc{rajpurkar2018know, title = {Know What You Don't Know: Unanswerable Questions for SQuAD}, author = {Pranav Rajpurkar and Robin Jia and Percy Liang}, year = {2018}, eprint = {1806.03822}, archivePrefix = {arXiv}, primaryClass = {cs.CL} }
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。