代码拉取完成,页面将自动刷新
.. py:class:: mindspore.ops.ReduceSum(keep_dims=False, skip_mode=False) 默认情况下,输出Tensor各维度上的和,以达到对所有维度进行归约的目的。也可以对指定维度进行求和归约。 通过指定 `keep_dims` 参数,来控制输出和输入的维度是否相同。 .. note:: Tensor类型的 `axis` 仅用作兼容旧版本,不推荐使用。 参数: - **keep_dims** (bool) - 如果为 ``True`` ,则保留计算维度,长度为1。如果为 ``False`` ,则不保留计算维度。默认值: ``False`` ,输出结果会降低维度。 - **skip_mode** (bool) - 如果为 ``True`` ,并且 `axis` 为空tuple或空list,不进行ReduceSum计算, `axis` 为其他值,正常运算。如果为 ``False`` ,则正常进行运算。默认值: ``False`` 。 输入: - **x** (Tensor[Number]) - 输入Tensor。 - **axis** (Union[int, tuple(int), list(int), Tensor]) - 要减少的维度。默认值: ``()`` ,当 `skip_mode` 为 ``False`` 时,缩小所有维度。只允许常量值,取值范围[-rank(`x`), rank(`x`))。 输出: Tensor,具有与输入 `x` 相同的shape。 - 如果 `axis` 为 ``()`` ,且 `keep_dims` 为 ``False`` , `skip_mode` 为 ``False`` ,则输出一个零维Tensor,表示输入Tensor中所有元素的和。 - 如果 `axis` 为 ``()`` ,且 `skip_mode` 为 ``True`` ,则不进行ReduceSum运算,输出Tensor等于输入Tensor。 - 如果 `axis` 为int,取值为2,并且 `keep_dims` 为 ``False`` ,则输出的shape为 :math:`(x_1, x_3, ..., x_R)` 。 - 如果 `axis` 为tuple(int)或list(int),取值为(2, 3),并且 `keep_dims` 为 ``False`` ,则输出的shape为 :math:`(x_1, x_4, ..., x_R)` 。 - 如果 `axis` 为一维Tensor,取值为[2, 3],并且 `keep_dims` 为 ``False`` ,则输出Tensor的shape为 :math:`(x_1, x_4, ..., x_R)` 。 异常: - **TypeError** - `keep_dims` 不是bool。 - **TypeError** - `skip_mode` 不是bool。 - **TypeError** - `x` 不是Tensor。 - **ValueError** - `axis` 取值为None。
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。