English | 简体中文 GitHub | Gitee码云
facexlib aims at providing ready-to-use face-related functions based on current STOA open-source methods.
Only PyTorch reference codes are available. For training or fine-tuning, please refer to their original repositories listed below.
Note that we just provide a collection of these algorithms. You need to refer to their original LICENCEs for your intended use.
If facexlib is helpful in your projects, please help to this repo. Thanks
Other recommended projects: Real-ESRGAN
GFPGAN
BasicSR
Function | Sources | Original LICENSE |
---|---|---|
Detection | Pytorch_Retinaface | MIT |
Alignment | AdaptiveWingLoss | Apache 2.0 |
Recognition | InsightFace_Pytorch | MIT |
Parsing | face-parsing.PyTorch | MIT |
Matting | MODNet | CC 4.0 |
Headpose | deep-head-pose | Apache 2.0 |
Tracking | SORT | GPL 3.0 |
Assessment | hyperIQA | - |
Utils | Face Restoration Helper | - |
pip install facexlib
It will automatically download pre-trained models at the first inference.
If your network is not stable, you can download in advance (may with other download tools), and put them in the folder: PACKAGE_ROOT_PATH/facexlib/weights
.
This project is released under the MIT license.
If you have any question, open an issue or email xintao.wang@outlook.com
.
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。
Activity
Community
Health
Trend
Influence
:Code submit frequency
:React/respond to issue & PR etc.
:Well-balanced team members and collaboration
:Recent popularity of project
:Star counts, download counts etc.